Reset

Blog

27 Results1 to 3

Page:
  1. 1
  2. of
  3. 9
UCT Specialty Chemical Cited in Biomolecular Study

In a recent paper published in ACS Biomaterials Science and Engineering by Darin Edwards et al., (DOI: 10.1021/acsbiomaterials.7b00596), UCT’s organosilane DETA (N-1 [3-(trimethoxysilyl) propyl]-diethylenetriamine, T2910KG) was used to form a monolayer on a microslide by the reaction of the cleaned surface with a 0.1% (v/v) mixture of the organosilane in freshly distilled toluene. These slides were used to study biological cultures involving N-Methyl-D-aspartic acid (NMDA) and α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid (AMPA) channel expression. The cultures were exposed to synaptic transmission antagonists against NMDA and AMPA channels which revealed significantly different receptor profiles of adult and embryonic networks in vitro.

Continue Reading
Comments (0)
UCT Silane Cited in Biomolecular Engineering Paper

In a paper authored by E. L. Jackson-Holmes et al., in Lab on a Chip ((2017), 17, 3634), UCT’s silane, tridecafluoro-1,1,2,2- tetrahydrooctyl-1-trichlorosilane, was employed in an integral role in a vapour form to produce a polydimethylsilane (PDMS) master in a procedure in which a microfluidic platform was developed for culture, longitudinal monitoring, and phenotypic analysis of individual stem cell aggregates. This novel platform uses a hydrodynamic loading principle to capture pre-formed stem cell aggregates in independent traps. 

Continue Reading
Comments (0)
UCT Silane Cited in Cellular Research Article

In a recent article published in Lab on Chip by E.L. Jackson-Holmes et al., (DOI: 10.1039/C7LC00763A), tridecafluoro-1,1,2,2-tetrahydrooctyl-1-trichlorosilane from UCT was integral in the production of a mold to perform their intended research. In the procedure, a master mold was fabricated by standard UV photolithography with the negative photoresist to create three layers of respective heights 200 μm, 100 μm, and 200 μm. In making the polydimethylsilane (PDMS) molding, the master was treated with the UCT silane vapor to allow release of the PDMS. These three-dimensional pluripotent stem cell (PSC) cultures have the ability to undergo differentiation, self-organization, and morphogenesis to yield complex, in vitro tissue models that recapitulate key elements of native tissues.  For more information on UCT specialty chemicals visit https://specialties.unitedchem.com/

Continue Reading
Comments (0)